



















## **EVALUATING FATIGUE DAMAGE**

Palmgren-Miner Rule

















































| Counting Cycle | Counting Cycles - Summary |       |                  |     |     |             |  |  |  |  |  |
|----------------|---------------------------|-------|------------------|-----|-----|-------------|--|--|--|--|--|
|                | Set                       | Count | Range            | Max | Min |             |  |  |  |  |  |
|                | 1                         | 1     | 52               | 48  | -4  |             |  |  |  |  |  |
|                | 2                         | 1     | 46               | 44  | -2  |             |  |  |  |  |  |
|                | 3                         | 1     | 42               | 42  | 0   |             |  |  |  |  |  |
|                | 4                         | 1     | 36               | 38  | 2   |             |  |  |  |  |  |
|                | 5                         | 1     | 34               | 38  | 4   |             |  |  |  |  |  |
|                | 6                         | 1     | 20               | 36  | 16  |             |  |  |  |  |  |
|                | 7                         | 1     | 18               | 36  | 18  |             |  |  |  |  |  |
|                | 8                         | 1     | 10               | 14  | 4   |             |  |  |  |  |  |
|                | 9                         | 1     | 8                | 26  | 18  |             |  |  |  |  |  |
|                | 10                        | 1     | 6                | 26  | 20  |             |  |  |  |  |  |
|                | 11                        | 1     | 6                | 10  | 4   |             |  |  |  |  |  |
|                | 12                        | 1     | 2                | 30  | 28  |             |  |  |  |  |  |
|                | 13                        | 1     | 2                | 24  | 22  |             |  |  |  |  |  |
|                |                           |       |                  |     |     |             |  |  |  |  |  |
|                |                           |       | © Intergraph 201 | 5   |     | INTERGRAPH' |  |  |  |  |  |











| Using Equation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1d)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                            |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|
| Example: Pump mar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | old, analyze all hot and one spared pun                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | np.                                                        |
| Load Cases Analoced           1         H-600 CASE NOT ACTIVE           2         H-600 CASE NOT ACTIVE           3         H-600 CASE NOT ACTIVE           4         (0069 W-02-17-8-9-14)           5         (0069 W-02-17-8-9-14)           6         (0069 W-02-17-8-9-14)           9         (007) U3-14-12           10         (007) U3-14-12           11         (007) U3-14-12           12         (007) U3-14-12           13         (007) U3-14-12           14         (007) U3-14-13           15         (007) U3-14-13           16         (007) U3-14-13           17         (007) U3-14-13           16         (007) U3-14-13           17         (007) U3-14-13           16         (007) U3-15-15           16         (007) U3-15-15 | states and 10 expansion ranges:<br>a All Hot - 10 All Hot - 13 Left A<br>All Ambient 10 All Hot - 13 Center<br>b Left Ambient - 12 All Hot - 16 Right<br>center Ambient - 16 Right<br>All Ambient - 16 Right Ambient<br>All Ambient - 17 Right Ambient<br>All Ambient - 18 Right Ambient - 18 Right Ambient<br>All Ambient - 18 Right Ambient - 18 Right Ambient<br>All Ambient - 18 Right | Ambient -<br>r Ambient Tright Ambient -<br>Ambient Ambient |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | creates ("recommends") all 10 ra<br>© Intergraph 2015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | INTERGRAPH                                                 |



| Several Ra                                                                                                      | nges ai                                                                                                                                                                                                                                                                                                                                                                                                  | re Sigr                                                                       | nifica                                                                                                            | int                                |                                                                            |                                                                                                         |                                                                                                                            |            |
|-----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|------------------------------------|----------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|------------|
| c<br>3<br>3<br>1<br>2<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9 | ods Compliance<br>RESAR II 2014 Ve<br>do Hamei MANIFOLI<br>Joensed To: ICAS<br>ODC compliance He<br>arious Load Cases<br>Load Case From                                                                                                                                                                                                                                                                  | r.7.00.01.1600,<br>(EXP)<br>TRAINING ESL -<br>FORT: Code Stree<br>Code Strees | (Build 141<br>INSTRUCTOR<br>ases on Elem<br>Allowable                                                             | 003) Date:<br>DEALR/EVAL C<br>ents | FEB 27, 20<br>OFY<br>de Stress                                             | 015 Time:<br>Allowable                                                                                  | 16:8<br>Distor Code                                                                                                        |            |
|                                                                                                                 | Node           6 (EXP)         50           9 (EXP)         50           10 (EXP)         11           11 (EXP)         12           12 (EXP)         12           14 (EXP)         14           15 (EXP)         14           14 (EXP)         17 | 11.53<br>16.37<br>5.96<br>20.03<br>9.30<br>4.21<br>15.16<br>24.22<br>30.01    | HPa<br>334.70<br>334.70<br>334.70<br>334.70<br>334.70<br>334.70<br>334.70<br>334.70<br>334.70<br>334.70<br>334.70 | 150                                | 22.04<br>30.63<br>10.69<br>6.63<br>23.65<br>23.55<br>6.60<br>6.46<br>50.08 | MPa<br>335.15<br>335.15<br>335.15<br>335.15<br>335.15<br>335.15<br>335.15<br>335.15<br>335.15<br>335.15 | 831.3<br>831.3<br>831.3<br>831.3<br>831.3<br>831.3<br>831.3<br>831.3<br>831.3<br>831.3<br>831.3<br>831.3<br>831.3<br>831.3 |            |
|                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                               | © Inter                                                                                                           | rgraph 2015                        |                                                                            |                                                                                                         |                                                                                                                            | INTERGRAPH |









| Fatigue Curve in CAESAR II                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\begin{array}{c} \textbf{Excel Calculation} \\ \textbf{Create a C2 Fatigue curve to reflect Markl} \\ use [qn (1a) \\ Sh = 20 ksi \\ Sc = 20 ksi \\ f = 6N^{A} - 0.2 \\ fmax = 1.2 \\ SA = f(1.25Sc+0.25Sh) \\ \hline N (x1000) f SA (psi) \\ 0.01 1.20 36000 \\ 3 1.20 36000 \\ 7 1.02 30637 \\ 10 0.95 28528 \\ 15 0.88 26306 \\ 20 0.83 24835 \\ 50 0.69 20677 \\ 100 0.60 18000 \end{array}$ | CAESAR II Data FileImage: Image: Im |
| © In                                                                                                                                                                                                                                                                                                                                                                                              | tergraph 2015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |











| Calcula                                  | te       | Stresses                              | Ċ                       | 20            |             |
|------------------------------------------|----------|---------------------------------------|-------------------------|---------------|-------------|
| <ul> <li>What is<br/>displace</li> </ul> | the emer | stress range (at node 10, the<br>hts: | anchor) for each of the | three imposed |             |
|                                          |          | Displacement at 20 (mm)               | Stress Range (MPa)      |               |             |
|                                          | D1       | 39.0                                  | 150.73                  |               |             |
|                                          | D2       | 38.0                                  | 146.86                  |               |             |
|                                          | D3       | 36.5                                  | 141.07                  |               |             |
|                                          |          |                                       |                         |               |             |
|                                          | _        | ©                                     | Intergraph 2015         |               | INTERGRAPH' |

| Calcula<br>(with 14               | Calculate <i>N</i> using (1d)<br>(with 14,500 for each set) |                                                 |          |                                                   |                 |                                 |            |  |  |  |  |
|-----------------------------------|-------------------------------------------------------------|-------------------------------------------------|----------|---------------------------------------------------|-----------------|---------------------------------|------------|--|--|--|--|
| ■ S <sub>E</sub> is th<br>Here, S | ne la<br>S <sub>E</sub> =                                   | rgest stress range.<br>150.73 MPa (the first lo | oad set) |                                                   |                 |                                 |            |  |  |  |  |
|                                   | i                                                           | Stress Range (MPa)                              | Ν        | r <sub>i</sub> (=S <sub>i</sub> /S <sub>E</sub> ) | r, <sup>5</sup> | r <sub>i</sub> ⁵₊N <sub>i</sub> |            |  |  |  |  |
|                                   |                                                             | 150.73                                          | 14,500   | 1                                                 | 1               | 14,500                          |            |  |  |  |  |
|                                   | 1                                                           | 146.86                                          | 14,500   | 0.974                                             | 0.878           | 12,732                          |            |  |  |  |  |
|                                   | 2                                                           | 141.07                                          | 14,500   | 0.936                                             | 0.718           | 10,412                          |            |  |  |  |  |
| $N = N_E$ $N = 14$                | <sub>3</sub> + <u>Σ</u><br>500                              | E( $r_i^5 N_i$ )<br>+12732+10412 = 37644        | 1        |                                                   |                 |                                 |            |  |  |  |  |
|                                   |                                                             |                                                 |          |                                                   |                 |                                 | Ļ          |  |  |  |  |
|                                   |                                                             |                                                 | © Inte   | ergraph 2015                                      |                 |                                 | INTERGRAPH |  |  |  |  |





| Accumulated Dama                                                             | age                                           |                             |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                           |
|------------------------------------------------------------------------------|-----------------------------------------------|-----------------------------|---------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|
| <ul> <li>The example fatigue curve<br/>stress range equation (1a)</li> </ul> | e reviewed earlier, N                         | IARKL AT :                  | 20KSI.FAT                 | Γ, matches th                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | e allowable               |
| <ul> <li>The appropriate number of<br/>imposed displacement (D1</li> </ul>   | f cycles was defined<br>) is entered twice, v | l in the Loa<br>ve will use | d Case Ec<br>the first er | ditor. Note th<br>htry, <i>N</i> =14500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | hat the larger<br>), now: |
| Load Case Editor Load Case Opt                                               | tons   Wind Loads   Wave Loads                |                             |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                           |
| Loads Defined in Input                                                       | Load Cases                                    | Stress Type                 | Load Cycles               | Recommend                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |
| W - Weight                                                                   | Lt D1                                         | FAT                         | 14500                     | Construction of the local data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                           |
| D1 - Displomnt Case #1                                                       | L2 D1                                         | FAT                         | 15000                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                           |
| D2 - Displomnt Case #2                                                       | L) D2                                         | FAT                         | 14500                     | Load Cycles                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                           |
| D3 - Displamit Case #3                                                       | 14 03                                         | FAT                         | 14500                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                           |
| WW-Weter Filled Weight                                                       | 15 01                                         | EXP                         | 14500                     | Import Load Cases                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                           |
| WNC-Weight no contents                                                       | 17 02                                         | EVP                         | 15000                     | Contractor of the second s |                           |
|                                                                              | 18 03                                         | EXP                         | 14500                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                           |
|                                                                              |                                               |                             |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                           |
|                                                                              | <u> </u>                                      |                             |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                           |

| Using the CAESAR II Fatigue Curve & Accumulated Damage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |             |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| Select the proper set of loads to evaluate:          Image: static Output Processor - (C_CAUX_CAU EXPRESS 2015) - FATICUE EVALUATE         Image: static Output Processor - (C_CAUX_CAU EXPRESS 2015) - FATICUE EVALUATE         Image: static Output Processor - (C_CAUX_CAU EXPRESS 2015) - FATICUE EVALUATE         Image: static Output Processor - (C_CAUX_CAU EXPRESS 2015) - FATICUE EVALUATE         Image: static Output Processor - (C_CAUX_CAU EXPRESS 2015) - FATICUE EVALUATE         Image: static Output Processor - (C_CAUX_CAU EXPRESS 2015) - FATICUE EVALUATE         Image: static Output Processor - (C_CAUX_CAU EXPRESS 2015) - FATICUE EVALUATE         Image: static Output Processor - (C_CAUX_CAU EXPRESS 2015) - FATICUE EVALUATE         Image: static Output Processor - (C_CAUX_CAU EXPRESS 2015) - FATICUE EVALUATE         Image: static Output Processor - (C_CAUX_CAU EXPRESS 2015) - FATICUE EVALUATE         Image: static Output Processor - (C_CAUX_CAU EXPRESS 2015) - FATICUE EVALUATE         Image: static Output Processor - (C_CAUX_CAU EXPRESS 2015) - FATICUE EVALUATE         Image: static Output Processor - (C_CAUX_CAU EXPRESS 2015) - FATICUE EVALUATE         Image: static Output Processor - (C_CAUX_CAU EXPRESS 2015) - FATICUE EVALUATE         Image: static Output Processor - (C_CAUX_CAU EXPRESS 2015) - FATICUE EVALUATE         Image: static Output Processor - (C_CAUX_CAU EXPRESS 2015) - FATICUE EVALUATE         Image: static Output Processor - (C_CAUX_CAU EXPRESS 2015) - FATICUE EVALUATE         Image: static Output Processor - (C_CAUX_CAUX_CAU EXPRESS 20 |             |
| © Intergraph 2015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | INTERGRAPH' |

| Ising the CAES                                                                                                                 | AR II<br>amag             | Fa <sup>:</sup><br>je | tigue C                     | Curve               | &              |            |      |             |                     |                |   |
|--------------------------------------------------------------------------------------------------------------------------------|---------------------------|-----------------------|-----------------------------|---------------------|----------------|------------|------|-------------|---------------------|----------------|---|
| View the results:                                                                                                              |                           |                       |                             |                     |                |            |      |             |                     |                |   |
| Cumulative Usane Extended                                                                                                      |                           |                       |                             |                     |                |            |      |             |                     |                | 1 |
| CAESAR II 2014 Ver.7.00.01.1600<br>Job Name: SEVERAL STRAINS<br>Licensed To: ICAS TRAINING ESL -<br>CAESAR II CUMULATIVE USAGE | ), (Build )<br>INSTRUCTOR | .41003)<br>( DEALR.   | Date: FEB 24,<br>/EVAL COPY | 2015 Tir            | oe: 17:0       |            |      |             |                     |                |   |
| Load Case                                                                                                                      | Cycles                    | From<br>Node          | Stress<br>(MPa )            | Allowable<br>Cycles | Usage<br>Ratio | To<br>Node | (MPa | Stress<br>) | Allowable<br>Cycles | Usage<br>Ratio |   |
| CASE 1 FAT - 14500 cycles D1                                                                                                   | 14500                     | 10                    | 150.73                      | 37841               | 0.38           | 20         |      | 0.00        | INFINITY            | 0.00           |   |
| CASE 3 FAT - 14500 cycles D2                                                                                                   | 14500                     | 10                    | 146.86                      | 43090               | 0.34           | 20         |      | 0.00        | INFINITY            | 0.00           |   |
| CASE 4 FAT - 14500 cycles D3<br>TOTAL:                                                                                         | 14500                     | 10                    | 141.07                      | 52703               | 0.28           | 20<br>20   |      | 0.00        | INFINITY            | 0.00           |   |
| Load Case                                                                                                                      |                           |                       | Results                     | for                 |                |            |      | Result      | s for               |                |   |
| Information                                                                                                                    |                           |                       | Node 1                      | 0                   |                |            | I    | Node        | 20                  |                |   |
|                                                                                                                                |                           |                       |                             |                     |                |            |      |             |                     |                |   |
|                                                                                                                                |                           |                       | © Intergrap                 | h 2015              |                |            |      |             | INTE                | RGRA           | P |

| Using tl<br>Accumu                    | Using the CAESAR II Fatigue Curve &<br>Accumulated Damage                                                                      |                                         |                      |                         |                                     |                              |           |  |  |  |  |
|---------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|----------------------|-------------------------|-------------------------------------|------------------------------|-----------|--|--|--|--|
| Node 1                                | 0 details:                                                                                                                     |                                         |                      |                         |                                     |                              |           |  |  |  |  |
| 1                                     | Cumulative Usage Extended                                                                                                      |                                         |                      |                         |                                     |                              |           |  |  |  |  |
|                                       | CAESAR II 2014 Ver.7.00.01.1600<br>Job Name: SEVERAL STRAINS<br>Licensed To: ICAS TRAINING ESL -<br>CAESAR II CUMULATIVE USAGE | , (Build :                              | 141003)<br>R DEALR   | Date: FEB<br>/EVAL COPY | 24, 2015 Tin                        | me: 17:0                     |           |  |  |  |  |
|                                       | Load Case                                                                                                                      | Cycles                                  | From<br>Node         | Str<br>(MPa             | ess Allowable<br>) Cycles           | Usage<br>Ratio               |           |  |  |  |  |
|                                       | CASE 1 FAT - 14500 cycles D1<br>CASE 3 FAT - 14500 cycles D2<br>CASE 4 FAT - 14500 cycles D3<br>TOTAL:                         | 14500<br>14500<br>14500                 | 10<br>10<br>10<br>10 | 150<br>146<br>141       | .73 37841<br>.86 43090<br>.07 52703 | 0.38<br>0.34<br>0.28<br>0.99 |           |  |  |  |  |
| □ Allon<br>(give<br>□ Usa<br>□ If the | wable Cycles comes from fatigue<br>en S, find N)<br>ge Ratio is (Cycles Required)/(C<br>e sum of ratios is < 1, fatigue is v   | e curve<br>ycles Allov<br>vithin limits | wed)                 |                         |                                     |                              |           |  |  |  |  |
|                                       |                                                                                                                                | © Intergra                              | iph 2015             |                         |                                     | 1                            | NTERGRAPH |  |  |  |  |



| Rework   | ed     | Example                    |                        | 20     |        |          |
|----------|--------|----------------------------|------------------------|--------|--------|----------|
| Now, for | or the | existing system and loads, | adjust the number of c | ycles: |        |          |
|          |        | Displacement at 20<br>(mm) |                        |        |        |          |
|          | D1     | 39.0                       | 150.73                 | 14,500 | 15,000 |          |
|          | D2     | 38.0                       | 146.86                 | 14,500 | 14,500 |          |
|          | D3     | 36.5                       | 141.07                 | 14,500 | 14,500 |          |
|          |        |                            |                        |        |        |          |
|          |        |                            | © Intergraph 2015      |        | ÍN     | TERGRAPH |

| Recalcu                           | ula                       | ate N                                            |         | 10                                                |       | 20                              |            |
|-----------------------------------|---------------------------|--------------------------------------------------|---------|---------------------------------------------------|-------|---------------------------------|------------|
| ■ S <sub>E</sub> is th<br>Here, S | ne la<br>S <sub>E</sub> = | argest stress range.<br>150.73 MPa (the first lo | ad set) |                                                   |       |                                 |            |
|                                   | i                         | Stress Range (MPa)                               | Ν       | r <sub>i</sub> (=S <sub>i</sub> /S <sub>E</sub> ) |       | r <sub>i</sub> ⁵₊N <sub>i</sub> |            |
|                                   |                           | 150.73                                           | 15,000  | 1                                                 | 1     | 15,000                          |            |
|                                   | 1                         | 146.86                                           | 14,500  | 0.974                                             | 0.878 | 12,732                          |            |
|                                   | 2                         | 141.07                                           | 14,500  | 0.936                                             | 0.718 | 10,412                          |            |
| $N = N_E$ $N = 15$                | ; + )<br>000              | $\sum (r_i^5 N_i) + 12732 + 10412 = 38144$       | ı       |                                                   |       |                                 |            |
|                                   |                           |                                                  | © Inte  | ergraph 2015                                      |       |                                 | INTERGRAPH |















| Source of this Material                                                                                                                                                                                                                                                                                                                                                                                                                              |   |                |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|----------------|
| <ul> <li>Commentary on the Guide for the Fatigue<br/>Assessment of Offshore Structures (2003)<br/>Updated April 2010 – American Bureau of<br/>Shipping</li> <li>Related / companion documents         <ul> <li>Guide for the Fatigue Assessment of Offshore<br/>Structures (2003) Updated April 2010 –<br/>American Bureau of Shipping</li> <li>DNV-RP-C203 Fatigue Design of Offshore<br/>Steel Structures (with Commentary)</li> </ul> </li> </ul> |   | ECONOMIC VIENO |
| © Intergraph 201                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5 | INTERGRAPH     |































| Evaluating the Gamma Function<br>$D = \frac{N_d}{A} q^m \Gamma(\frac{m}{h} + 1)$ |                  |       |                  |       |                  |         |         |            |  |
|----------------------------------------------------------------------------------|------------------|-------|------------------|-------|------------------|---------|---------|------------|--|
| 1+m/h                                                                            | <b>Г</b> (1+m/h) | 1+m/h | <b>Г</b> (1+m/h) | 1+m/h | <b>Г</b> (1+m/h) | 1+m/h i | (1+m/h) |            |  |
| 3.00                                                                             | 2.00             | 4.00  | 6.00             | 5.00  | 24.00            | 6.00    | 120.00  |            |  |
| 3.05                                                                             | 2.10             | 4.05  | 6.39             | 5.05  | 25.88            | 6.05    | 130.72  |            |  |
| 3.10                                                                             | 2.20             | 4.10  | 6.81             | 5.10  | 27.93            | 6.10    | 142.45  |            |  |
| 3.15                                                                             | 2.31             | 4.15  | 7.27             | 5.15  | 30.16            | 6.15    | 155.31  |            |  |
| 3.20                                                                             | 2.42             | 4.20  | 7.76             | 5.20  | 32.58            | 6.20    | 169.41  |            |  |
| 3.25                                                                             | 2.55             | 4.25  | 8.29             | 5.25  | 35.21            | 6.25    | 184.86  |            |  |
| 3.30                                                                             | 2.68             | 4.30  | 8.86             | 5.30  | 38.08            | 6.30    | 201.81  |            |  |
| 3.35                                                                             | 2.83             | 4.35  | 9.47             | 5.35  | 41.20            | 6.35    | 220.41  |            |  |
| 3.40                                                                             | 2.98             | 4.40  | 10.14            | 5.40  | 44.60            | 6.40    | 240.83  |            |  |
| 3.45                                                                             | 3.15             | 4.45  | 10.85            | 5.45  | 48.30            | 6.45    | 263.26  |            |  |
| 3.50                                                                             | 3.32             | 4.50  | 11.63            | 5.50  | 52.34            | 6.50    | 287.89  |            |  |
| 3.55                                                                             | 3.51             | 4.55  | 12.47            | 5.55  | 56.75            | 6.55    | 314.95  |            |  |
| 3.60                                                                             | 3.72             | 4.60  | 13.38            | 5.60  | 61.55            | 6.60    | 344.70  |            |  |
| 3.65                                                                             | 3.94             | 4.65  | 14.37            | 5.65  | 66.80            | 6.65    | 377.42  |            |  |
| 3.70                                                                             | 4.17             | 4.70  | 15.43            | 5.70  | 72.53            | 6.70    | 413.41  |            |  |
| 3.75                                                                             | 4.42             | 4.75  | 16.59            | 5.75  | 78.78            | 6.75    | 453.01  |            |  |
| 3.80                                                                             | 4.69             | 4.80  | 17.84            | 5.80  | 85.62            | 6.80    | 496.61  |            |  |
| 3.85                                                                             | 4.99             | 4.85  | 19.20            | 5.85  | 93.10            | 6.85    | 544.61  |            |  |
| 3.90                                                                             | 5.30             | 4.90  | 20.67            | 5.90  | 101.27           | 6.90    | 597.49  |            |  |
| 3.95                                                                             | 5.64             | 4.95  | 22.27            | 5.95  | 110.21           | 6.95    | 655.77  |            |  |
| © Intergraph 2015                                                                |                  |       |                  |       |                  |         |         | INTERGRAPH |  |



![](_page_45_Figure_2.jpeg)

![](_page_45_Figure_3.jpeg)

![](_page_46_Picture_2.jpeg)

![](_page_46_Figure_3.jpeg)

![](_page_47_Figure_2.jpeg)

![](_page_47_Figure_3.jpeg)

![](_page_48_Figure_2.jpeg)

![](_page_48_Figure_3.jpeg)

![](_page_49_Picture_2.jpeg)

![](_page_49_Figure_3.jpeg)

![](_page_50_Figure_2.jpeg)

![](_page_50_Figure_3.jpeg)

![](_page_51_Figure_2.jpeg)

![](_page_51_Figure_3.jpeg)

![](_page_52_Figure_2.jpeg)

![](_page_52_Figure_3.jpeg)

B31.3 302.3.5(D) "WHEN THE COMPUTED STRESS RANGE VARIES" -APPLYING EXISTING B31.3 RULES IN CAESAR II

B31.3 302.3.5(D) "WHEN THE COMPUTED STRESS RANGE VARIES" -APPLYING EXISTING B31.3 RULES IN CAESAR II

54